Heat transfer and flow structure through a backward and forward-facing step micro-channels equipped with obstacles

نویسندگان

چکیده

This study presents 2-D simulations of a flow-through sudden expansion/contraction micro-channel with the existence obstacles. The bottom wall is maintained at constant flux, while other walls are adiabatic. Rectangular adiabatic obstacles mounted before expansion region on upper and lower channel used. finite element method was used to discretize equations that govern physical model. Results indicate apparition separate vortex, situated in corner after for low Reynolds numbers. For higher values ratios, vortex separation length increases. obtained results show have considerable effect dynamics flow enhancement heat transfer.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Fluid Flow and Heat Transfer Characteristics Behind a Single Backward-Facing Step

Numerical solutions based on standard finite volume method are presented for the study of heat transfer and fluid dynamic characteristics in turbulent flows behind a single sided backward-facing step. The calculation of the differential equations is performed using SIMPLE algorithm. For the turbulent quantities standard K-model is used. Predicted mean velocity profiles and reattachment lengths ...

متن کامل

Enhancement of Heat Transfer over a Double Forward Facing Step with Square Obstacle through Taguchi’s Optimization Technique

In this paper, the heat transfer to the fluid, passing through the double forward facing step (FFS) channel with square obstacle is enhanced by Taguchi’s S/N ratio analysis. Flow through the forward facing step channel has a wide range of applications in thermal systems due to its flow separation and subsequent reattachment, which in turn enhances the heat transfer. Flow separation and reattach...

متن کامل

Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step

This paper presents a numerical study of heat transfer to turbulent and laminar Cu/water flow over a backward-facing step. Mathematical model based on finite volume method with a FORTRAN code is used to solve the continuity, momentum, energy and turbulence equations. Turbulence was modeled by the shear stress transport (SST) K–x Model. In this simulation, three volume fractions of nanofluid (0%...

متن کامل

Heat Transfer to Laminar Flow over a Double Backward-Facing Step

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream ...

متن کامل

Numerical Study of Heat Transfer and Laminar Flow over a Backward Facing Step with and without Obstacle

Heat transfer and laminar fluid flow over backward facing step with and without obstacle numerically studied in this paper. The finite volume method adopted to solve continuity, momentum and energy equations in two dimensions. Backward facing step without obstacle and with different dimension of obstacle were presented. The step height and expansion ratio of channel were 4.8mm and 2 respectivel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Thermal Science

سال: 2021

ISSN: ['0354-9836', '2334-7163']

DOI: https://doi.org/10.2298/tsci200215219h